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Abstract—Time synchronization is an enabling service that
allows devices to share a consistent notion of time and thus
makes it easier to build efficient and robust collaborative services.
However, existing synchronization protocols based on wireless
packet transmissions are not energy efficient because powering
the radio often consumes a significant fraction of the energy
budget. In this paper, we propose PSync, a visible light-based
time synchronization protocol that relies on an LED light source
and is highly energy efficient for the receivers. The key novelty
in our protocol is the use of a De Bruijn sequence to provide a
rough estimate of time using a minimum amount of information.
Experiments show that our scheme achieves an average synchro-
nization error of 1.3 timer ticks (32 µs per clock tick). In addition,
the additional energy consumed for one round of synchronization
based on PSync can be as low as 19% of the energy needed to
receive a small packet (1 byte) using IEEE 802.15.4 radio.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), de-
signing highly energy-efficient protocols suitable for use in
a localized or indoor environment such as inside a room or
vehicle becomes interesting. In many of these usage scenarios,
while the end devices may be highly resource constrained, a
resource-rich device may be nearby.

In this paper, we focus on the problem of synchronizing
resource-constrained IoT devices. Time synchronization is a
key enabling service when there is a need for many devices to
coordinate their actions. By ensuring that all the devices share
a consistent notion of time, it becomes much easier to build
efficient and robust collaborative services.

Typically, synchronization protocols for these wireless net-
works rely on the fact that every wireless device receives a
given packet at (approximately) the same instance of time.
Thus, if some device sends a synchronization packet, other
devices that receive the packet can synchronize on the instant
of packet reception. The energy consumed by these synchro-
nization protocols depends on the cost of radio transmission
and reception. For resource-constrained devices, powering the
radio can consume a significant fraction of the energy budget.
Further, in order to execute the synchronization protocol via
packet reception, devices often need to keep the radio on for

This work was supported in part by the Agency for Science, Technology
and Research (A*STAR), Singapore, under SERC Grant 1224104049.

a period much longer than the actual packet transmission and
reception duration, leading to higher energy consumption.

In this paper, we propose PSync, a visible light-based time
synchronization protocol. The main idea in our design is that
pulses of light produced by light emitting diodes (LEDs) yield
a very efficient mechanism for synchronizing nearby devices.

PSync utilizes an asymmetric design and is motivated by the
widespread deployment of LEDs. The use of LEDs is expected
to grow due to its energy efficiency [1]. These ambient LED
light sources have very fast (nanosecond) switching times and
are highly programmable. The power efficiency in the receiver
arises from the following factors. First, the photodetectors
(PDs) or light sensors in the receivers consume very little
power. Second, the sampling of light sensors can be done at
a high rate. Therefore, it is possible for a device (receiver) to
sleep most of the time and only wake up over short intervals
to perform synchronization. In order to synchronize, one or
more light sources (simultaneously) broadcast a predetermined
bit sequence (where ON is 1 and OFF is 0) and devices
synchronize on the transition of a specific pulse.

The key challenge of PSync is the design of the bit
sequence. In order to be highly energy efficient, a receiver
should be awake only for a very short interval and yet be able
to quickly determine the synchronization point. In our design,
a receiver first performs low-frequency sampling to estimate
the approximate time to the actual synchronization point and
subsequently wakes up to perform high-frequency sampling
just before the synchronization point.

Our solution to designing the bit sequence is to use a
De Bruijn sequence [2], which has the following special
property: each possible sequence of N bits (there are 2N such
sequences) can be found in a unique position within a De
Bruijn sequence of 2N bits. Thus, we may determine our po-
sition in such a sequence by reading only N consecutive bits.
While De Bruijn sequences have been applied in genomics,
pattern recognition [3], our application of this technique for
synchronization is novel.

We have fully implemented our synchronization protocol
using an off-the-shelf LED light source controlled by TelosB.
Our evaluation shows that PSync can achieve an average
synchronization error of 1.3 timer ticks (32 µs per clock tick).
Using a light pulse width of 1 ms, one synchronization cycle
of PSync consumes around 57 µJ. In comparison, the reception
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Fig. 1. Light sensor readings from 2 TelosB motes detecting the same light
source.

of a small (1 byte) packet over the IEEE 802.15.4 radio
consumes 171 µJ. The energy consumption of PSync can be
further reduced by using a smaller pulse width. With a 0.5 ms
pulse width, synchronization power consumption reduces to
32 µJ.

This paper is organized as follows. In Section II, we present
related work. We motivate the possibility and benefit of light-
based synchronization in Section III and present the protocol
details in Sections IV through VI. Experiments are presented
in Section VII, discussions in Section VIII, and we conclude
in Section IX.

II. RELATED WORK

Visible light based communication (VLC): Visible light
communication over a short range has been standardized as
IEEE 802.15.7. The standard supports data rates of up to
96 Mb/s. Schmid et al. [4] demonstrated a prototype system
for using low power LEDs that supports low data rate (less
than 1 Kbps) over a distance of up to 2 m. Visible light has also
been used for localization. In Epsilon [5], a receiver employs a
light sensor to retrieve the beacon information which includes
measured RSS (received signal strength) values. The RSS
values are later used to compute the distances to multiple
bulbs.

Time synchronization and calibration: For devices with
reliable Internet connections and no resource constraint, time
synchronization is well understood. It can, for example, be
provided by a service such as the network time protocol
(NTP) [6]. On resource-constrained wireless networks, a vari-
ety of synchronization protocols, such as RBS [7], TPSN [8],
FTSP [9], and Glossy [10] have been proposed. These proto-
cols use RF communications among the nodes and the time
of packet reception as a reference. Mostly, they can achieve
fast synchronization and accuracy on the order of 10 µs or less.
However, the nodes need to keep their radios always on during
the synchronization process, which can consume significant
energy.

A related issue is clock calibration. Calibration is used to
compensate for clock drift after synchronization is done and
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Fig. 2. Light intensity detected by a TelosB mote with blinking rate of 5 kHz.

can be used to reduce errors between clock synchronizations,
hence reducing the need for more frequent synchronization.
The proposed techniques mostly try to use periodic back-
ground signals to perform calibration. For example, Li et
al. [11] use the periodicity of the pulse from FM radio broad-
cast to calibrate the clocks in different nodes. FLIGHT [12]
uses the periodic change in the intensity of the light emitted
from indoor fluorescent lamps to achieve the same. Note that
even after calibration, more work needs to be done to achieve
synchronization. In FLIGHT, protocols such as FTSP is still
needed to provide the initial time reference.

Preamble sampling based MAC protocols: In wireless
sensor networks, MAC protocols that employ preamble sam-
pling have been proposed, e.g., B-MAC [13], X-MAC [14],
CMAC [15], and other related asynchronous MAC protocols.
In these protocols, the preambles either just indicate activi-
ties (e.g., channel is busy) or MAC addresses; they are not
explicitly designed for fine-grained synchronization.

Our contribution: Our proposed protocol PSync is novel in
that visible light is used for synchronization rather than com-
munication. The technique is based on a De Bruijn sequence
which enables a receiver to quickly obtain a rough estimate
of the synchronization point by reading only a small number
of bits.

III. MOTIVATION AND BASIC MEASUREMENT RESULTS

In order to test the feasibility of visible light-based time
synchronization, we conducted the experiments described be-
low.

For a radio-based synchronization protocol [10], the basic
assumption is that the SFD pins of the radio fall exactly at the
same time for all the devices on receiving the synchronization
packet. This provides all the devices a common synchronous
event. For visible light-based time synchronization to be
feasible, we need an analogous synchronous event observable
by all the devices simultaneously. The rise and fall time for
an LED is on the order of nanoseconds [1], and hence, LEDs
are ideal candidates — as long as the rise and fall observed
by the sensors is sharp.
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TABLE I
NOTATION

Symbol Definition

τ time for transmitting one bit in the preamble
2ν length of the De Bruijn sequence
ν length of the unique subsequence
κ number of bits for verification

To validate this observation, we deployed two TelosB de-
vices and programmed them to sample light at a rate of 1 kHz,
with a light source blinking at different rates. From the results
shown in Fig. 1, we can see that the edges are very sharp and
the devices can clearly detect these rise and fall events with a
synchronization error bounded by the sampling rate.

The next question is whether we can easily program the
transmitter to blink at a very high rate and whether the receiver
can detect the changes in light intensity. Fig. 2 shows the
intensity detected by a light sensor for a blinking rate of
5 kHz. The result shows that despite being a fairly resource-
constrained device, the TelosB can generate and receive a
5 kHz light pulse clearly. In fact, we were able to achieve
such transmissions and receptions without artifact for up to
10 kHz with the TelosB devices.

IV. DESIGN OF PREAMBLE SEQUENCE

This section presents the core mechanism of our visible
light-based time synchronization protocol. For a device to
be synchronized, the minimal requirement is to have a light
sensor. The other basic requirement is the presence of a
programmable source of light that can initiate the process
of synchronization. The basic idea of our synchronization
protocol is to trigger the LED to emit light, and then use the
falling edge of the light signal to synchronize all the devices
in its luminance range.

A. Preamble

In wireless communications, a preamble is typically used
to synchronize the transmission timing between two or more
devices. Our approach is inspired by extremely simple and
successful asynchronous LPL-based MAC protocols like B-
MAC [16], Wise-MAC [17] and X-MAC [14] which make
use of preambles to synchronize packet reception.

1) Naive Preamble: We begin with a simple strategy. The
transmitter (e.g., the LED in the house lighting system) emits
a preamble of duration T , where T is slightly longer than the
wake-up interval of the duty cycling devices. Devices with
light sensors periodically wake up and sense. On detecting
an ongoing preamble transmission, they aggressively sample
the light sensor until they observe the falling edge of the light
signal, which is used as the synchronization point. This simple
strategy depicted in Fig. 3 is obviously not energy efficient for
the resource-constrained devices being synchronized.

2) Slotted Preamble with Data Encoding: A better strategy,
which allows greater duty cycling among devices, uses a
slotted preamble with data encoded into each slot indicating
the number of slots remaining until the synchronization point
(i.e., the falling edge). One such simple binary encoding could
use tuples 00 and 01 to represent 0 and 1 respectively, and use
11 as the delimiter between slots. In this way, a receiver can
unambiguously detect a complete slot in the preamble.

In this scenario, “6 slots to go” can be encoded into the
seventh slot from the end as (01)(01)(00). Each slot can be
separated using a special 11 delimiter. With each slot length
considered fixed, the devices can sample a slot and quickly go
to sleep until the synchronization point.

This slotted preamble strategy with data encoding is illus-
trated in Fig. 4. Even though this strategy leads to more duty
cycling, it also leads to a significant increase in the preamble
length.

3) Energy Efficient Preamble: The challenge lies in smartly
designing a preamble that saves energy for the light emitters
and, more importantly, for the light receivers. Moreover, the
scheme should be robust enough to prevent bad synchroniza-
tion due to random fluctuations in the light signal caused by
background noise or physical obstructions. An energy-efficient
preamble strategy should meet the following requirements:

1) The preamble should be short and be able to inform
the receivers about the synchronization point well in
advance. This eliminates the prolonged continuous ag-
gressive sampling at the receivers.

2) The receivers should sample at a low rate, and for a
very short duration, during the preamble. At the same
time, they should be able to quickly and accurately infer
the synchronization point and go back to sleep until the
synchronization point.

3) The preamble should have error-correcting properties
that allow the devices to detect false positives and false
negatives.

Our efficient preamble makes use of a De Bruijn sequence. We
first explain the basics of the sequence and then briefly discuss
an efficient algorithm to generate and decode the sequence.
Later we discuss how our scheme exploits this preamble to
achieve precise synchronization on the order of microseconds.

B. De Bruijn Sequences

De Bruijn sequences are periodic sequences in which every
possible ν-tuple over a finite alphabet appears exactly once in
a given period. Computing the position of a particular ν-tuple
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in the De Bruijn sequence is known as the De Bruijn decoding
problem and is often used in position sensing applications. In
our application, we use the binary alphabet {0, 1}.

To illustrate how a De Bruijn sequence can be exploited,
consider the sequence 00010111. Any 3-bit subsequence of
this sequence is unique and can be used to determine the
position of the subsequence. For example, the starting position
is indicated by 000, followed by 001, 010, 101, 011, and finally
111. Hence, in our synchronization protocol, if a light source
transmits the sequence (turning the LED on and off), a receiver
can simply determine when the end of the sequence will be
after reading 3 bits.

For sequence generation and decoding, we implement the
algorithms described in Mitchell et al. [2], which recursively
constructs special De Bruijn sequences that can be decoded in
constant time with minimal memory overhead.

In our application, the sequence is generated offline. With
a pulse or a bit duration of 1 ms, alphabet size k = 2, and
ν = 10, the light source needs to store a 1024-bit pattern for
transmission over a cycle length of 1.024 seconds.

To perform decoding of the constructed De Bruijn sequence,
the algorithm needs a small look-up table E which maps all the
k-ary ν-tuples to their corresponding positions in the sequence.
Due to the lack of space, we will not detail the decoding
scheme here. It suffices to highlight that the algorithm decodes
in constant time and the space required is small.

1) Efficiency of the De Bruijn Sequence: We compare
the efficiency of the simple data encoding approach of Sec-
tion IV-A2 with the use of a De Bruijn sequence. Assume
that the pulse duration is 1 ms and the receiver would like
to wake up only once every 1 s, resulting in 1000 slots.
Using a De Bruijn sequence, a receiver can estimate time to
synchronization after reading 10 slots.

Using the patterns ‘00’ and ‘01’ for the bits ‘0’ and ‘1’,
representation of 1,000 slots needs 10 patterns, i.e, 20 bits
at least. Along with the pattern ‘11’ as the delimiter, a node
needs to read in the best case only 22 bits, or in worst case
(19+22) bits, when the reading just missed the first bit of the
first pattern after the delimiter ‘11’. So, on average, it will be
(22+19+22) / 2, i.e., about 32 bits. A De Bruijn based solution
needs only 10 bits. Thus, the improvement is (100*(32-10)/32
)% = 68%.

Another advantage of the De Bruijn sequence is that it is
easy to perform error correction, since for every extra bit read,
the position indicated by the most recent subsequence must be
the next position after decoding. Hence, a very simple error
detection scheme can be efficiently implemented by reading
k additional bits and then checking whether the decoded
positions are correct.

V. PROTOCOL

In this section, we describe the synchronization protocol in
more detail. We separately describe the protocol for the initia-
tors flashing the light, and the receivers being synchronized.

A. Initiators

The synchronizing light sources emit a specific doubly-
punctured binary De Bruijn sequence of span ν and having a
period of 2ν−2. Each of the ones in the sequence corresponds
to a given time τ for which the LED is ON while each
zero corresponds to an OFF state of equal duration. The total
duration of the De Bruijn preamble is T = τ × (2ν − 2).
This is followed by a “safe zone” of a 0 pulse, and finally
an “end zone” of a 1 pulse with the transition edge being the
synchronization point. The sequence used is chosen so that two
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specific strings are eliminated. These two strings are all zeros
and all ones, as these are natural conditions when the light
is always OFF and always ON respectively. Removing these
two states reduces the chance that a device draws a wrong
conclusion during normal changes in the light conditions.

B. Receivers

The receivers wake up periodically, at least once in every
interval whose length depends on the duration of the preamble.
When awake, a receiver collects s samples for each of the ν
symbols of the emitted binary De Bruijn sequence of span ν.
The s × ν samples are collected at a low sampling rate, and
they coarsely represents a unique ν-tuple. A device decodes
its position in the preamble to infer unambiguously when the
preamble will end.

After decoding, the device sleeps for the rest of the pream-
ble and wakes up during the “safe-zone,” at which point it
performs aggressive sampling at the maximum allowable rate
to detect the synchronization point accurately.

C. Preamble Detection

Detection of a ν-tuple is error-prone in a noisy environment.
A single bit error in the preamble detection would cause a
device to wake up at an incorrect interval and synchronize
to a wrong edge. For example, detecting 100000 as 100001
would make the decoder return 6 instead of 62 for the De
Bruijn sequence illustrated in Fig. 5. In this case, the device
will wake up while the preamble is still being transmitted
instead of in the safe zone.

In order to improve reliability, we adopt a lightweight error
detection mechanism to check the correctness of the sensed
samples. For a binary De Bruijn sequence of span ν, instead of
collecting samples for ν symbols, we collect for ν+k symbols,
where k corresponds to the error detection bits. These samples
for k additional symbols give us a total of k additional tuples
of the De Bruijn sequence. If correctly sampled, the decoding
of each of the (ν + k)-tuples in the ν + k samples should be
consecutive as shown in Fig. 6 and we can correctly calculate
the time to wake up. The value of k can be dynamically
adjusted depending on how noisy the environment is.

A second issue is that the sleep interval and the length of
safe-zone have to take into account the maximum clock drift
during the preamble interval. For example, if the maximum
clock drift is 20 ppm and preamble length is 10 s, the maxi-
mum clock drift is 200 µs either way. Thus, 400 µs of delay is
added, 200 µs to the sleep interval and 200 µs for safe-zone.
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Fig. 7. Edge detection algorithm.

D. Synchronization Point Detection

In our protocol, at the synchronization point, the devices
sample at the maximum allowed rate to minimize the synchro-
nization error. Sampling at high rates causes data explosion,
making data storage and offline processing infeasible. For
real-time synchronization in a noisy environment, in order to
handle this inflow of data, we adopt the Online Change Point
Detection Algorithm (CUSUM) [18] with an Exponentially
Weighted Moving Average filter which we call rlsCUSUM.

For the edge detection algorithm, there is a trade-off
between MTD (Mean Time to Detection) and FAR (False
Alarm Rate). Since our objective here is to minimize the
synchronization error between devices, we allow higher FAR
to reduce MTD.

In order to ensure that false alarms are kept low, we imple-
ment another layer of false alarm filtering on top of rlsCUSUM
to increase synchronization accuracy further, which we call
rlsCUSUM′. In our protocol, we generate a pulse at the end
zone of duration τez . With CUSUM in operation for decreased
MTD, we get a number of false upward and downward edges
due to noises. We mark all those upward and downward edges
as invalid if they fail to satisfy the valid pulse width criteria
tupwardEdge − tdownwardEdge ≈ τez . Fig. 7 compares rlsCUSUM
(middle) and rlsCUSUM′ (bottom) for samples captured by a
light sensor in a noisy environment (top).

VI. IMPLEMENTATION

There are two major components in our system: the synchro-
nizers and the devices being synchronized. The synchronizing
devices are light emitters. To validate the feasibility, we have
tested different light sources such as simple LED on TelosB,
LED lamps and the LED flash on smart phones. In principle,
any programmable light source can act as a synchronizer.
However, due to interaction with the operating system, high
blinking rate with short pulses can only be implemented on
devices with fine grained control over timing. Hence, we
implemented and evaluated the light-based synchronization
protocol in the Contiki OS [19] and tested on TelosB platform
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with an on-board sensor suite including light, temperature and
humidity sensors.

The protocol uses two levels of light sensor sampling, as
described earlier. There is a coarse-grained synchronization
phase using the preamble and a fine-grained synchronization
phase using the final synchronization pulse. Since synchro-
nization accuracy depends on the sampling rate, we perform
sampling at the fastest rate. Light sensors on the TelosB
platform have a rise time of ≈ 0.5 µs with maximum observed
sampling interval being ≈ 7 µs. Thus it takes ≈ τsample = 8 µs
to turn on, collect an individual sample and go to sleep.

Considering each pulse of duration τ , with 2ν −2 pulses in
the De Bruijn sequence followed by a safe zone and an end
zone of τ duration each, the sync phase lasts for 2ν × τ time
period.

A. Background Light Intensity Estimation

Before each synchronization phase, we need to obtain
an estimate of the background light intensity level. This is
required to differentiate the ON and OFF pulses during the
preamble sampling phase and also to set the parameters of the
edge detection algorithm. This estimation process is performed
for a duration of τnoise (typically a few microseconds) to collect
a few samples. The duration is negligible in comparison to the
duration of the remaining two sync phases.

B. Preamble Detection

The preamble detection phase involves coarse-grained sam-
pling to collect ν-tuple with an additional k error detection
bits from the entire preamble. If sampled correctly, the devices
can decode the correct position of the collected samples in the
preamble and estimate time to the synchronization point.

During this phase, the devices collect s samples for every
ν + k pulses of the preamble, thus needing the sensors to be
on for (s(ν+k)×τsample). With s = 1 and τsample = 8 µs in our
implementation, sensors remain on in this phase for τcoarse ≈
8(ν + k) µs.

At the end of this stage, a node is already approximately
synchronized. As the device can sample at any point in the
light pulse, the granularity of the timing is on the order of
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the width of the pulse (e.g., 1 ms) plus clock drift to the
common synchronization point. Depending on the synchro-
nization accuracy required by the application, the protocol
may stop here if such accuracy is sufficient, which we call
“sync with preamble”. Otherwise, it proceeds to the next
phase to complete the synchronization using the common pulse
transition, which we call “sync with pulse”.

C. Edge Detection

In the final stage, devices wake up in the safe zone and
perform sampling aggressively to search for the final syn-
chronization point. Using the edge detection algorithm with
a signal smoothing filter, a node detects the rising and the
falling edge of the synchronization pulse.

During this phase, in the worst case, a device turns on its
light sensor at the beginning of the safe zone and performs
aggressive sensing until the end of the synchronization phase.
Hence, this aggressive sampling duration of this phase only
needs to be slightly larger than τ .

D. Duty Cycle of the Light Sensors

The duty cycle of the devices undergoing synchronization
can be approximated as follows:

Duty cycle =
τnoise + τcoarse + τaggressive

τsync

=
τnoise + 8(ν + k) + 2τ

2ντ
≈ 2(1−ν).

Therefore, duty cycling decreases exponentially with length
of the tuple ν and extremely low duty cycle is feasible with
relatively short tuple. If ν = 10, duty cycle is 0.2%. A duty
cycle of 10−6 can be achieved with ν = 21.

VII. EXPERIMENTAL EVALUATION

In this section, we will evaluate the performance of our
light based synchronization. First we present the experimental
setup followed by evaluations on the impact of pulse width and
the distance between a light source and receivers on the syn-
chronization accuracy. Next, we perform power measurements
to evaluate the energy efficiency of our protocol. Finally, we



present experimental results when multiple LEDs send light
(with some delays) to a single receiver.

A. Experiment Setup

In our experiments, we use a 3 W off-the-shelf LED. To
have finer control of the light source’s timing, we constructed
a simple multi-LED light source controlled by a single TelosB
as shown in Fig. 14a. With this setup, the LED can be strictly
controlled to provide light pulses on a time scale of 100 µs. In
the evaluation, unless otherwise stated, we set the pulse width
T to be 1 ms, ν to be 10 and the synchronization cycle lasts
for about 1 s.

The receivers in our experiments are TelosB motes running
Contiki. The default built-in light sensor is used. After the
synchronization is completed, a packet transmission is ini-
tiated to the receiver(s). We measure the accuracy of time
synchronization by comparing the clock obtained by our
synchronization protocol with the clock obtained using a
Glossy-like synchronization protocol that reads the local clock
immediately after the packet reception. Time is measured in
units of clock ticks where one clock tick is approximately
32 µs.

B. Synchronization Accuracy

We measure the performance of two different approaches:
the full protocol that synchronizes all nodes on a single transi-
tion, and the approximate scheme where devices synchronize
using only the preamble. In this experiment, the light source
and the receiver are kept close enough so that the light pulse
can be detected with minimum error.

In Fig. 8, the cumulative error distributions of both the
schemes using a TelosB/LED as the light source are shown.
We can see that the full PSync scheme is able to achieve
average error of 1.3 clock ticks, with a maximum error around
4 clock ticks. For the approximate scheme, since sampling is
done at a low rate, the error is much larger. The average error
is 11 clock ticks and the maximum error reaches the duration
of one pulse width of 1 ms or 32 clock ticks.

For the scheme that attempts to synchronize using only
the preamble, the inaccuracy is mainly caused by different
sampling positions in a bit, i.e., where the two motes sense
different time points of one bit in the preamble.

We also evaluate the impact of pulse width on the synchro-
nization accuracy by varying the pulse width from 100 µs to
10 ms. As shown in Fig. 9, since the synchronization point
is based on transition, as expected, pulse width has fairly
minimum impact on accuracy.

C. Power Measurement

We measure the power consumption of running PSync in
TelosB motes, the platform we used to implement our algo-
rithm. Power measurements are performed using the Monsoon
power meter.

PSync has two main stages that consume power, the coarse
sampling period and the aggressive sampling period. We
measure the power consumption of the two stages and compare
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(a) Idle states power consumption.
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(b) Light sync power consumption.

 0

 10

 20

 30

 40

 50

 60

 70

 0  200  400  600  800  1000

P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 r

a
te

 (
m

W
)

Time (ms)

(c) Radio sync power consumption.

Fig. 10. Power profiles for different operations: (a) CPU idle, (b) running
PSync every second, (c) reception of a 1-byte packet over IEEE 802.15.4
radio.

with the power consumed by radio based synchronization
protocol. As a baseline for radio based synchronization, we
consider the power consumed by receiving a small 1-byte
packet using the IEEE 802.15.4 radio at 2.4 GHz on the
TelosB. The sender is programmed to transmit one small
packet per second. The results are shown in Fig. 10.

Fig. 10a shows the power profile when the CPU is idle.
The processor wakes up periodically triggered by timer events.
The power consumption rate varies from 1.73 mW to 6.52 mW,
with an average of 2.01 mW.

Fig. 10b shows the power profile when PSync is run using
a pulse width of 1 ms. The power consumption varies from
2.00 mW to 8.00 mW and the additional energy consumed on
performing one cycle of PSync is 57.49 µJ.

Fig. 10c shows the power profile when a single 1-byte
packet is received. The power consumption varies from 2 mW
to 70 mW and the additional energy consumed is 171.61 µJ.

As the processing is relatively simple, the major power
consumption in PSync is actually the energy consumed to turn
the light sensor ON for the duration of the coarse sampling
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Fig. 11. Synchronization error of PSync when varying distances.

period. Further, once a light sensor on the TelosB is turned
on, it stays on for at least 2 ms to 3 ms. Nevertheless, the
sampling duration can be shortened if a shorter pulse width
is used. With a smaller pulse width of 0.5 ms and 0.1 ms, the
additional energy consumed to perform one cycle of PSync
reduces to 32.43 µJ and 20.42 µJ respectively.

D. Varying Distances

In this evaluation, we investigate how the accuracy varies
with distance between the light source and the devices to be
synchronized. Using the 3 W off-the-shelf power by battery
and controlled by TelosB, the distance up to which one can
safely synchronize is observed to be 60 cm as illustrated in
Fig. 11. While the error does increase slightly as the distance
increases, the average error is still less than 2 ticks, even at
the maximum distance evaluated.

In order to increase the distance between sender and re-
ceiver, one can either increase the intensity of the light source
or the sensitivity of the light sensor. In the next experiment, we
measure the light intensity between a stronger light source (an
off-the-shelf 9 W LED light bulb) and a more sensitive light
sensor (the light sensor on the Galaxy S II). Fig. 12 shows the
corresponding results. It can be seen that the sensing range has
increased to more than 5 m. The use of an even brighter source
or a more sensitive light sensor will increase the sensing range
further.

E. Multiple Light Source

One potential challenge for application of light based syn-
chronization is that a sender might not be able to correctly
receive a signal from multiple light generators. Multi-hop
synchronization might also be needed when devices are spread
over a larger area.

We investigate the sub-problem whereby a receiver can
detect light from 2 sources. Problem happens when these 2
sources are not well synchronized, leading to the transmitted
sequences going out of sync. This can cause difficulty for the
receiver to decode the sequence. A similar challenge exists in
a radio based protocol, which can be mitigated by exploiting
constructive wireless interference and capture effect.
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Fig. 12. Light Intensity vs. distance using a 9 W LED and light sensor on
Galaxy S II.
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Fig. 13. Plot showing the percentage of valid subsequences of a De Bruijn
sequence decoded by a receiver with two concurrent light sources flashing
with varying delays.

In this experiment, we look at the impact of slight offset
between preamble generated by two light sources on its suc-
cessful decoding. The experimental setup is shown in Fig. 14b.
The sender has 1 TelosB controlling 6 LEDs through a driver
circuit. In the experiment, 2 randomly selected LEDs are
used. We vary the offset between the LED transmissions and
check the reception reliability by calculating how likely the
receiver can decode the preamble represented by the ratio of
the number of correctly decoded 10-bit subsequences out of
the 1022 possible subsequences. The result shown in Fig. 13
suggests that in the worst case, 85% of the 10-bit subsequence
can be correctly received.

Recall that for correct decoding, all we need is for the
receiver to be able to correctly decode just ν + k bits out of
the 2ν bits of the De Bruijn sequence. If an error is detected,
the receiver simply moves on to later part of the preamble and
restart decoding. Based on the result in Fig. 13, we can see
that as long as the delay between the light sources is a small
fraction of the pulse width, it is very likely that a receiver can
correctly decode the ν + k sub-sequences.

VIII. DISCUSSION

So far, PSync has mainly been evaluated in scenarios where
the receiver can sense a light directly from the light source.
In many deployments, a typical LED light bulb would be



(a)

(b)

Fig. 14. Experimental setup.

sufficient to synchronize devices within an area, e.g., within
a room. As time synchronization in an IoT context is for
a cluster of devices within proximity, one can scale up the
coverage through a central control. All LED lights within all
rooms in a house or a single floor can be controlled centrally
through a single controller. In this way, synchronization would
be similar to the multiple light sources scenario we have eval-
uated. One interesting behavior of light-based synchronization
is that there is no destructive interference as is the case of
packet transmission. Instead, the last transition observed will
be considered as the synchronization point.

Another option to extend the coverage of PSync is to
execute the protocol in a multiple-hop manner with multiple
light sources. Note that only a subset of the devices need
to serve as light sources. However, all light sources must
be within the visible light range of at least one other light
source and the union of their ranges cover the entire area
of interest. Starting from a single light source, clock infor-
mation is propagated outwards. Two additional functions are
needed to be incorporated into PSync. First, the next cycle
of synchronization starts after a fix duration after the end of
the previous round’s synchronization point. Second, addition
clock information needs to be added into the bit sequence so
that the offset from the source can be known. Naturally, the
error will grow as the hop count increases.

IX. CONCLUSION

We have presented the design and evaluation of the visible-
light based synchronization protocol PSync. Experiments show

that the protocol can achieve good accuracy while consuming
very little power. As PSync requires only LED and light
sensors, it can be easily integrated into most IoT devices,
including devices that are extremely resource-constrained or
have no radio onboard. PSync provides a viable alternative
solution for systems that require synchronization with mini-
mum overhead using existing lighting infrastructure.
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